
Dynamic Packet-filtering in High-speed Networks

Using NetFPGAs

Felix Engelmann, Thomas Lukaseder, Benjamin Erb, Rens van der Heijden, Frank Kargl

Institute of Distributed Systems

University of Ulm

Albert-Einstein-Allee 11

89081 Ulm

felix.engelmann@nlogn.org, thomas.lukaseder@uni-ulm.de, benjamin.erb@uni-ulm.de,

rens.vanderheijden@uni-ulm.de, frank.kargl@uni-ulm.de

Abstract—Computational power for content filtering in high-
speed networks reaches a limit, but many applications as intru-
sion detection systems rely on such processes. Especially signature
based methods need extraction of header fields. Hence we created
an parallel protocol-stack parser module on the NetFPGA 10G
architecture with a framework for simple adaption to custom
protocols. Our measurements prove that the appliance operates
at 9.5 Gb/s with a delay in order of any active hop. The work
provides the foundation to use for application specific projects
in the NetFPGA context.

I. INTRODUCTION

Modern network applications such as video streaming or

cloud-based backup services constantly require more traffic,

leading to increasing bandwidth for links. To accommodate

this, the Ethernet specifications were raised up to 100 Gb/s [1]

which outperforms most busses on motherboards for I/O

connectivity.

For network debugging or intrusion detection it is useful

to peek into the flow of a link and capture some packets

for further processing or inspection. Other use cases of a

packet filter include the collection of meta-data and statistical

evaluation. When filtering a few packets, all the packets

passing through the link have to be inspected for the filter

to function correctly. A common architecture consists of

a network interface controller (NIC) attached to a general

purpose CPU. In this setup, the double link throughput has to

be handled by the motherboard (to and from the NIC). This

is possible for gigabit throughput, but can not yet be achieved

at 10 G speeds with commodity hardware.

To enable extensive filter capabilities for high-speed links as

well, we developed a packet filter that directly processes data

in hardware. Using the field-programmable gate array (FPGA)

of a so-called NetFPGA platform, a throughput of 40 Gb/s is

possible. The filter card can then be attached to a link with

no influence on the transmission. It facilitates parsing arbitrary

byte-oriented protocols and detects packets by specified header

fields matching one of several rules on multiple layers.

By default, filtered packets are forwarded and additionally

duplicated to send them to a secondary diagnostic inter-

face. This interface captures and analyses the packets using

lightweight hardware. For firewall applications, this behaviour

can easily be changed to drop packets or forward them to the

capture interface.

We evaluate our implementation in order to verify line-

speed capability, which includes none or minimal obligatory

influence on the packet flow. This is split into latency and

throughput.

II. RELATED WORK

Many authors have worked on implementing packet analysis

in hardware in the past [2], [3], [4], [5], [6], [7], often with

applications in intrusion detection. In intrusion detection, a

main challenge is not just the analysis of network headers,

but also content inspection. To efficiently implement content

inspection, different metrics can be used, including the added

latency by the system, the throughput of the network and the

throughput of the hardware. Previous work has mainly focused

on the implementation of so-called signature-based network

intrusion detection systems, which aim to detect known attacks

using known communication patterns, typically expressed by

regular expressions on the content.

Hutchings et al. [2] describe a hardware implementation

of a signature-based network intrusion detection system using

FPGAs. Their focus is on string matching using regular

expressions and they note a staggering improvement by a

factor of up to 600 for large patterns. The authors imple-

ment their matching using Non-deterministic Finite Automatas

(NFAs) to model the syntactic elements of their expressions

to automatically convert arbitrary regular expressions to their

hardware implementations. They compare their implementa-

tion against an open-source NIDS, implemented in software.

The throughput reached by their system is fairly constant in

the case of a hardware implementation, providing around 300-

400 kB/s for a 1MB file in chunks of 1kB, and up to 870

for a 10MB file in chunks of 16kB, adding a latency of up

to1.2ms and 7.38ms, respectively. Compared to their work, our

focus lies on much higher throughput (up to 1GB/s), where

directly using regular expressions is not feasible. However, we

note that our filters can be used to identify individual network

978-1-4799-5418-6/14/$31.00 ©2014 IEEE 55

flows, which can then be analyzed by their regular expressions

module.

Aldawairi et al. [3] also discussed the topic of regular

expression matching, and showed an accelerator that uses finite

state machines stored in RAM, attached to the FPGA, in order

to improve the speed at which packets can be matched against

regular expressions. However, they have not analysed their

system in a real-world setting using network traffic. Instead,

they focussed exclusively on the potential throughput in terms

of computational overhead. In addition, we note their idea

introduces a new bottleneck: the bandwidth of the bus to

the RAM. They also discuss previous work, in particular the

approach by Sourdis & Pnevmatikos[4], which parallelizes dif-

ferent matching procedures to perform fast regular expression

matching. They also discuss the work by Gokhale et al. [5],

which presents Grandidt, which focusses on reconfigurability

without reconfiguration of hardware. Compared to all these

approaches, our focus is on the second type of matching rules

described by these works – not string matching, but protocol

layer analysis.

Unlike the previous approaches, our goals are aimed at a

packet filter that provides maximal network throughput and

minimal latency. This filter will dynamically analyse network

headers and can forward the filtered packets to an advanced

filter, which can then perform arbitrary intrusion detection

procedures or other processing. The advantage of our approach

over the previous work is twofold: first, filtering packets this

way is much more efficient in terms of network throughput,

network latency and FPGA size; second, our approach does

not force the implementation of all intrusion detection rules

into regular expressions.

Kobiersky et al. [7] developed an FPGA based header

analyser which is realised by a finite-state machine. In their

workflow they describe the protocols of the stack in XML

syntax and translated these to HDL. This process is done

by first creating an FSM which digests the input byte wise.

Because this needs too many cycles, they parallelise it into

a multi-char FSM by finding common transitions in the

original automatons. The additional conversion process and

the complexity with wider busses could not fit to our use case.

Also their architecture lacks the ability to change filter values

at runtime.

We base our approach on the work by SCOTT [6], who

developed a module for the 1G NetFPGA data flow which

is capable of matching the first six 64 bit words to a static

filter. In [6], the author introduces a content of the filter

that is assembled from a human readable rule specification

on the host of the card. It can then be transferred to the

NetFPGA at runtime and takes effect immediately. Because the

bit string filter is created in software, new protocols can easily

be implemented without synthesising the FPGA firmware.

However, the fixed offsets of the filter limit its capabilities

to a tree shaped protocol stack, of which only one path can

be filtered, because all previous header lengths are necessary

to determine the offset. In an environment where a header

can be embedded into several different protocols, only one

combination per port can be filtered. While this might be

sufficient for debugging purposes, it can not be used in an

IDS setup with multiple filter rules to match.

III. IMPLEMENTATION

Our approach extends the capabilities of the filter developed

by SCOTT by abstracting from any static offsets of header

fields. Hence, our approach transparently handles dynamic

offsets of known protocols. This is achieved by enhancing

the hardware and adding the semantics of protocols. So the

headers can be parsed on the FPGA and the offsets to the

fields of interest are computed dynamically.

The basic concept of our filter module for the 10G NetFPGA

platform is based on the work of SCOTT. It consists of two

parts. One is used for buffering and forwarding packets to the

right output ports and another more involved part, which is

the actual parser and filter. The path through the entire FPGA,

including our filter module, is depicted in Figure 1.

A. Environment

For the buffering and forwarding framework, it is crucial to

perform with minimal impact on the data flow. The buffer is a

standard fall-through FIFO buffer with the width of one word

and a total size of 2048 bytes. It is directly attached to the

input interface of the module. To avoid overflows, it can stall

the input. This FIFO buffer stores as many words as needed to

determine the output of the packet. As soon as the destination

is made available in a second small FIFO buffer, data can be

forwarded.

The output handler monitors the destination buffer. As long

as there is an entry in it, the next packet from the data

buffer is forwarded to the indicated port. This process allows

a pipelined operation, where several packets can be in the

buffer concurrently. Next, packets are transmitted sequentially

out of the FIFO buffer in correct order. When the filtering

is completed after the first word of every packet, the module

induces only the inevitable delay of a single cycle.

B. Parsing

The parsing of the protocol stack is done in parallel while

writing the input to the data buffer. This only interferes with

the data flow if a header boundary lies within a word. In that

case, the flow is kept for an additional cycle. The process is

implemented by a finite-state machine, in which each node

corresponds to one layer in the stack. This mechanism is

shown in Figure 2.

The first node takes a special role, because the link layer is

restricted to Ethernet. The Ethernet frame header has a min-

imum length of 14 bytes and it can be extended by multiples

of 4 bytes (e.g. by an additional VLAN tag). This does not

affect the headers inside, which are mostly aligned to 32 bit.

As a result, a lot of fields span across two data words. To

simplify the extraction of header fields, we provide a virtual

word stream aligned to the start of the network header.

After the link layer node has determined the length of the

header, it stores the remainder of the current word into a buffer

56

in NIC
input

arbiter
buffer

filter
port

buffer

output queues out NIC

out NIC

∧

filter module

Fig. 1. Dataflow of packets through the modules of the NetFPGA and the feedback of the filter to stall

Link

Layer

Network

Layer

Transport

Layer

...

wait

802.1

IPv4 IPv6· · ·

TCP UDP ICMP

final

Fig. 2. Finite-state machine for parsing of the main internet stack

register. This register serves as the lower part of the virtual

word. Inside the header, interesting fields can be extracted

to apply a filter afterwards. One field that must be extracted

to parse the network header is the ether type field, which

indicates the protocol that is encapsulated by the payload.

Therefore, the structure of the consecutive nodes is charac-

terised by a switch statement, selecting the protocol specified

by the preceding layer. Each case must specify an offset to the

next header and a type for the nested protocol. The positions

of the required fields can easily be calculated within the virtual

word, which is completed by the first part of the current AXIs

word. Also a check has to be included, if the header spans

multiple words to update the front part of the virtual word

and increment the word counter to keep track of the position

within the packet.

On completion of one node, the flag to retain the data flow is

set and the state machine is transitioned to the state of the next

layer. This is necessary to move the FSM into a consistent state

before parsing the next protocol header. If the encapsulated

header is not recognised, the transition goes directly to the final

state of the FSM. In the final state, a check is performed to

determine whether the packet is already completely received.

This works by verifying that the current word is the last

word of this packet. If the packet is completely received,

the process uses an additional cycle in which the previously

extracted header fields are stored to registers. If the packet

is not completely received, the filtering actions described in

the next section are performed in parallel to storing the input

stream into the FIFO buffer. In the second cycle of the final

state the extracted fields are matches against the specified filter.

C. Filtering

When the collection of header fields as part of the parsing

process is finished and when all fields are stored in temporary

registers, these can be matched independently of their former

position in the packet. A rule in this filter process consists of a

mask and a filter for each head field. Utilising the capabilities

of the FPGA, all fields can be matched to multiple rules at

once. These results are all conjoined by << or >>, so one

matching rule suffices to mark the packet as a match.

The host can write and read the mask and filter data via the

AXI bus over the PCIe interface. To facilitate the creation of

the filter bit strings we adapted the python script from SCOTT.

There the fields, parsed in hardware, are mapped to names.

With this generator, human readable rules can be edited in a

text file and then be compiled to native commands and directly

written to the registers in the required format.

IV. EVALUATION

The intent of our work was to implement a linespeed filter

on the NetFPGA. To verify this goal, we assembled a generic

test setup. This consists of the NetFPGA card at its core

and two additional systems, each equipped with an intel 10G

X520-2 NIC. The topology between the three entities is a

ring. This allows us to have a direct reference link for all

measurements. As all ports have SFP+ connectors, we use

direct attach copper cables.

A. Latency

For linespeed connections, latency is the most crucial factor.

Because the test setup is laid out symmetrically, the delay

can be measured by the round trip time (RTT) and precise

time synchronisation of multiple systems is not required. The

57

100 300 500 700 900 1,100 1,300 1,500

50

55

60

65

packet size in bytes

ro
u
n
d
tr
ip

ti
m
e
in

µ
s

direct link
NetFPGA fully buffered
NetFPGA direct forward

Fig. 3. Roundtrip time of ping echo request / -response depending on the packet size and route through test setup.

default utility ping was not adapted since the age of 10 Mbit

Ethernet and is not accurate enough to measure these latencies.

A user-space program in interrupt mode can not measure RTTs

below ca. 180µs. In super-user mode and adaptive send rate,

the kernel switches to polling the I/O and thereby reducing

the processing time on the host. With this method RTTs

below 50µs can be measured. To reveal minor deviations

microsecond resolution is not sufficient.

To keep the ICMP protocol we adapted the ping utility to

use the timespec struct and the corresponding functions of

the realtime clock of linux instead of timeval, which enables

nanosecond resolution. With this measurement, we achieve a

reproducible standard deviation below 1.5µs.

The duration of transmission of a packet from a memory

location to the physical medium is dependent on the size of the

packet. We have analysed this delay using the program ping,

which can expand an ICMP packet with random data to a given

size. Figure 3 presents this dependency for the two possible

routes ant two configurations of the NetFPGA. We assumed

a worst-case scenario, in which the packet is not forwarded

until it is completely stored in the buffer. This corresponds to

the use case where the destination port of the packet can not

be determined until the last word of the packet.

The experimental results fully comply with our prediction

that larger packets need more time. In case of the direct link,

there is only one transmission for each direction, and it has the

lowest RTT. The gently inclining slope in Figure 3 is caused

by the buffer in the Ethernet cards. With an additional hop in

the path, the inevitable delay can be seen as offset between the

linear regressions at size zero. As the size includes headers,

we cannot test this with an arbitrarily small packet size. In the

buffered case, the time required for a packet of size zero would

be the same as with direct forwarding. However, the additional

buffer steepens the slope. The delay difference for a 1500 byte

packet between buffered and direct of 2.6µs coincide in order

of magnitude with the theoretically calculated value of 480 ns.

B. Throughput

The second parameter of data transfer is throughput. We

use iperf for this measurement, which sends random data

over a TCP connection. This method is suitable for our case,

because it resembles a common traffic of the Internet. To

handle up to 10 Gb/s by the sending and receiving nodes, some

kernel parameters have to be increased, such as the buffer

sizes. Similarly, TCP requires an increased window size. To

determine values for these parameters that are sufficient to

fully utilise the connection, a direct link is used.

With jumbo frames sent over the direct link between the

NICs, a throughput of about 9.9 Gb/s could be reached, but the

data path of the NetFPGA is limited to the maximum trans-

mission unit (MTU) of 1500 bytes. This reduces throughput to

9.5 Gb/s. By controlling the MTU on the link, the packet size

can be adjusted. Figure 4 shows the throughput for the three

different settings of the latency test.

With smaller packet sizes, the ratio of header size to payload

length gets bigger and consequently, the data throughput drops.

The measurement on the direct link is in accordance with the

theoretically derived exponential decline. The throughput of

packets with sizes below 1000 bytes through the NetFPGA

drops below that measured on the direct link. This might be

caused by multiple buffer registers placed into the data flow.

At common MTU sizes in the range from 1000 to

1500 bytes, the filter can keep up with the throughput over the

direct connection. This only holds if the MTU is a multiple

of 4 plus 2. As the MTU does not include the Ethernet header

of 14 bytes, the peaks are at multiples of 4 bytes. A simple

explanation is a bus of width 4 somewhere on the card. This

only partially holds, because to transfer a 1400 byte packet

over a 4 byte bus, 350 words are required. So the ratio of

58

1,455 1,460 1,465 1,470 1,475 1,480 1,485

8

8, 5

9

9, 49

·109

maximum transfer unit

th
ro
u
gh

p
u
t
in

G
b
/s

direct link
NetFPGA fully buffered
NetFPGA direct forward

Fig. 4. Throughput measured with iperf depending on the the maximum transfer unit

350

351
is too small in relation to the drop from 9.5 to below

9 Gb/s. Given this, we suspect that the four lanes of the XAUI

connection the PHY device to the FPGA, which may have

huge overhead for unaligned word lengths.

However if the packet size is appropriate, the filter has no

influence on the throughput of the intersected link.

V. CONCLUSION

Our protocol parser and filter for the NetFPGA architecture

fulfils all our initial requirements of a linespeed network

appliance as part of the NetFPGA environment which is

easy to adapt. We implemented a self-contained intellectual

property core ready to place in other NetFPGA projects as a

preprocessing step.

Our parser uses an extended finite-state machine to parse

byte-oriented protocol headers on multiple layers. The pro-

vided environment allows an easy adaption as well as the

direct implementation of new protocols. This enables short

development cycles in both the design and validation of these

implementations. The processing rate of one header per cycle

is comparable with dedicated 10 G network hardware. Our

measurements confirm that the parsing and filtering process

has no influence on throughput at adequate packet sizes, and a

negligible influence on throughput for small packets, which do

not carry payload but only handle latency dependant controls

(TCP ACK). With respect to latency, the worst-case scenario

imposes about 3µs additional delay, plus the unavoidable

delay of adding an additional hop on the medium access layer.

With standardised interfaces, our work can be incorporated

in any project requiring filtering for a specific protocol, in-

cluding the intrusion detection mechanisms we discussed as

part of the related work.

For future work, the module become even more dy-

namic, because the synthesis of hardware is a complex time-

consuming process. With one cycle read lookup-tables in on-

chip block-RAM, it will be possible to specify the structure

of the headers from the host at runtime. The expressiveness of

the filter rules would be another area of interest. For example,

the possibility to specify negative rules would provide all the

expressiveness of predicate logic.

REFERENCES

[1] “IEEE Standard for Information technology– Local and metropolitan area
networks– Specific requirements– Part 3: CSMA/CD Access Method
and Physical Layer Specifications Amendment 4: Media Access Control
Parameters, Physical Layers, and Management Parameters for 40 Gb/s
and 100 Gb/s Operation,” IEEE Std 802.3ba-2010 (Amendment to IEEE
Standard 802.3-2008), IEEE, pp. 1–457, 2010.

[2] B. Hutchings, R. Franklin, and D. Carver, “Assisting network intrusion
detection with reconfigurable hardware,” in 10th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines, 2002. Proceed-

ings, 2002, pp. 111–120.
[3] M. Aldwairi, T. Conte, and P. Franzon, “Configurable string matching

hardware for speeding up intrusion detection,” SIGARCH Comput.

Archit. News, vol. 33, no. 1, pp. 99–107, Mar. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1055626.1055640

[4] I. Sourdis and D. Pnevmatikatos, “Fast, large-scale string match for
a 10Gbps FPGA-Based network intrusion detection system,” in Field

Programmable Logic and Application, ser. Lecture Notes in Computer
Science, P. Y. K. Cheung and G. A. Constantinides, Eds. Springer
Berlin Heidelberg, Jan. 2003, no. 2778, pp. 880–889. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-540-45234-8 85

[5] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole,
and V. Hogsett, “Granidt: Towards gigabit rate network intrusion
detection technology,” in Field-Programmable Logic and Applications:

Reconfigurable Computing Is Going Mainstream, ser. Lecture Notes
in Computer Science, M. Glesner, P. Zipf, and M. Renovell, Eds.
Springer Berlin Heidelberg, Jan. 2002, no. 2438, pp. 404–413. [Online].
Available: http://link.springer.com/chapter/10.1007/3-540-46117-5 43

[6] M. Scott, “A wire-speed packet classification and capture module for
netfpga,” First European NetFPGA Developers’ Workshop, 2010.

[7] P. Kobiersky, J. Korenek, and L. Polcák, “Packet header analysis and
field extraction for multigigabit networks,” in Design and Diagnostics

of Electronic Circuits & Systems, 2009. DDECS’09. 12th International

Symposium on. IEEE, 2009, pp. 96–101.

59

